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Abstract

The current use of functionals to evaluate order-of-convergence of a numerical
scheme can lead to incorrect values. The problem comes about because of interplay
between the errors from the evaluation of the functional, e.g., quadrature error, and from
the numerical scheme discretization. Alternative procedures for deducing the order
property of a scheme are presented. The problems are studied within the context of the
inviscid supersonic flow over a blunt body; however, the problems and solutions
presented are not unique to this example.

Keywords: Code verification, grid convergence, supersonic blunt-body, drag functional,
error norm.

1. Introduction

Computational Aerodynamicists conduct most of their grid convergence studies by
studying the behavior of solution functionals, e.g., drag, lift and moment coefficients, as
the computational grids are refined. A basic assumption underlying the use of functionals
is “that the order of the method applies globally as well as locally”[1]. Functionals are
used for several reasons: first, their accurate evaluation is of intrinsic value; and second,
they provide a means of determining convergence properties of a numerical scheme
without looking directly at hundreds of thousands of field point values. Ideally, an error
measure should be used to examine order properties of grid convergence studies;
however, exact solutions are usually not available for flows of practical interest.
Therefore, estimating convergence properties using functionals is frequently the only
course of action available.

However, there are some subtle problems associated with the use of functionals for
grid convergence studies, and if these problems are not recognized and resolved, the
results that follow from the use of functionals can be very misleading. The alternative to
using functionals, evaluating convergence from field point values, is equally marred with
problems that are actually harder to resolve. It is the purpose of this paper to expose these
problems, and where possible, suggest solutions.

There are many aspects of a numerical order-properties analysis that must be done
correctly in order for the analysis to be reliable. Paramount among these are: that grid
refinements must be uniform, preferably with grids sequences that are hierarchical; and
the iterative methods used to solve the discrete equations on a given grid must be
sufficiently converged, preferably with residuals reduced several orders of magnitude
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below the solution error. Of course, this is complicated by the fact that the errors are not
known a priori.

In this work, we focus strictly on problems associated with the use of functionals in
grid refinement studies. We assume all other conditions required for a reliable order-
property analysis are satisfied. In § 2, we present well known methods for computing the
order properties from numerical results. The third section applies one of these methods
to the results of a numerical simulation to demonstrate the problems that can occur when
applying a standard method to the drag functional. Section 4 considers how the drag
functional should behave relative to the behavior of the surface pressure. Sections 5 and 6
investigate one of the problems associated with the evaluation of the order-of-
convergence from a functional. However, a second problem in the order property
evaluation prevents a complete solution. Section 7 discusses the implementation of
Richardson’s extrapolation. In § 8, we identify the source of the difficulty that is inherent
to functionals by applying the standard method to realistic models of the error. Section 9
introduces two techniques to reliably predict order properties from functionals, or closely
related metrics that are applicable when the exact solution is not known. Conclusions and
recommendations are made in § 10. The mathematician Paul Halmos when asked how he
went about doing mathematics replied, “First, think of a question. Second, I look at
examples, and then third, guess the facts”[2]. We followed Halmos’ advice in this
exposition.

2. Order-of-convergence of field point values

In Ref. [3] it was shown that in order to study the grid convergence of a multi-
dimensional problem with a single grid size measure, h, the grid aspect ratio has to
remain constant over all k-grids. In two dimensions, this condition is:

h
y ,k = constant ,x =

h
x ,k

where hx and h are the grid spacing in the x and y directions, respectively. If this
y

necessary condition is satisfied, then convergence can be studied with a single measure,
say hk = h k x h k and we say that the grids belong to the same family. We note that, as

in [3], we assume that the physical domain is mapped to a uniformly spaced
computational domain, and all mesh spacings refer to those in the computational domain.

Let hk be a measure of the spacing on the kth grid satisfying (1). Let eU be the exact

solution of some function of interest, and u
c
 k be its computed value on the kth grid at

some mesh point n,m with coordinates x , y. Let the grids be ordered such that
1 > h > h2 ... > h

k_ 1
 > hk . Furthermore, the grids are nested in the sense that if Sk  is the set of

points of the kth grid, then Sk c S
k+ 1 . 

In the asymptotic convergence range, a numerical

algorithm of order p behaves like:

(1)



u
c k (x , y) = U (x , y) + Gr (x , y)hk 

( x ,y) 
+ O(hk

p+1
),	 k =1,2,3,.... 	 (2)

Although it is common to say that a numerical algorithm has an order-of-convergence p,
the reality is that the order-of-convergence changes from point to point. This fact is
recognized in the notation of (2), and it will become important in § 4. After dropping the
higher-order terms in (2), at a given x, y there are three unknowns: Ue , a, and p . If the

exact solution is known, then p can be readily determined from the solutions on two
grids as follows:

p

z — uck 
— U

e 
= 

h
k
	

— a
p .
	 (3)e u

c , k+ 1 — 
U

e 	hk+ 1

A similar relation can be derived when the exact solution is not known, by using the
solutions on a sequence of three grids.

u
ck — 

u
c , k+ 1 	 [

h
k
 — h

k+ 1 	 [1— l hk+ 1 / hk
 )

p I	 h
z/== k 	.	 (4)
k u

c , k+ 1 — 
u

c , k+2 	 [h
k+1 — hk+ 2 ] 

C
1 — I h + / h

+ )p J2 h
k+ 1

k 2	k 1

If

h
k+ l+l = hk = 6 , 	 (5)

h
k+2 	

h
k+ 1

then the right hand side of Eq. (4) becomes identical to that of Eq. (3). In both cases, the
order-of-convergence is given by

p = loga (z) , 	 (6)

where z = ze , or zk . In what follows we will assume that condition (5) is satisfied1.

Another common practice, used when the exact solution is not known, is to apply Eq.
(3) using the solution on a very fine grid as a surrogate for the exact solution. However,
this is an approximation that should be used with caution. Formally substituting this
approximation into Eq. (2) and dropping the higher-order terms gives

1 Note that condition (5) is different from (1).
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z	 =	
[h

k

pp
	 ( h / h )p

7
u

ck — 
u

ck- ref 	
— hk 	 k-'^ k 9	 h

k	( )
k , k _ ref	 p 	 p 	 h

k+ 1

pu
c , k+ 1 — 

u
c , k _ ref	 [h

k+ 1 — hk _ref ] 
C

1 — ( h
k _ref 

h
k+ 1 ) 9

where k_ ref denotes the very fine reference grid. If both 
hk-Pef 

and 
hk_ ref « 1, then

hk+ 1	 hk+ 2

the right hand side of Eq. (7) approximately equals u
p

. There is not a single closed form
solution that applies for all k, k _ ref combinations, but we can examine some specific
cases. Evaluating Eq. (7) for k _ ref = k + 2 gives

p

[
1— ( h

k _ ref
/ hk) 

79
	 h

k p( 1 — 1/6
2p

 ) p
z	 (6 

p
+ 1 ).(8)=	 =	 6 =

k ,k ref 

C
l —( h	 /h )

p
J2

h
k+ 1 	 (1 — 1/6

p
)L	 k _ ref	 k+ 1

Thus, if Zk , k _ ref is naively substituted into Eq. (6) we get P = log6 (6
p
 + 1), and the order-

of-convergence is over predicted by O(1/6
p
 log(6)) . Table 1 gives

p = l
_ ref 

(p)) from Eq. (7) for k_ reog6(z
k , k 	 f = k + 2  and k + 3 fora range of p. From this

we see that Eq. (7) is a good approximation for p > 2 when k_ ref = k + 2, and for p > 1
when k_ ref = k + 3.

3. The blunt-body problem

We illustrate the problems that are associated with the use of functionals for the study
of grid convergence rates with numerical results from the computation of a blunt-body in
an inviscid supersonic stream. However, we emphasize that the problems we discuss are
not unique to the blunt-body problem, indeed they are not unique to fluid mechanics, and
may occur in any grid convergence study involving functionals. The blunt-body in a
supersonic stream is a well understood problem. The problem is non trivial without being
overly complicated, and has interesting flow physics features. Its solution by finite-
difference methods dates back to the mid-sixties. A detailed review of the rich history of
this problem as well as the physical properties of the flow can be found in Ref. [4]. The
particular case we study is the Mach 6 flow of an inviscid gas over a circular cylinder. In
our numerical implementation the problem is solved as a time dependent problem with
the bow shock wave fitted as a boundary of the flow. By fitting the shock, the numerical
scheme acts only on a smooth flow region, as illustrated by the pressure contours shown
in Fig. 1. Thus the computation is limited to the layer bounded by the bow shock, the
circular cylinder, the symmetry line (B = 0

o
), and a supersonic out flow boundary

imposed at some B = B
max , 

see Fig. 1. The physical plane is transformed to a

computational plane by the transformation,



r — b (0)
Z = 	, Y = 0 /0

max, 
T = t.

s (0, t) — b (0)

Here, r , 0 and t are the radial, circumferential and time coordinates, respectively. In
general, the body shape is defined by b(0 ) , for the case under study b(0) = 1 . The shock
wave shape is defined by s (0, t) and is computed as part of the solution. In the
computational plane, mesh points are uniformly distributed between the body and the
shock and between the symmetry line and the outflow line. Let N be the number of mesh
point intervals between the body and the shock, and let M be the number of mesh point
intervals between the symmetry line and the outflow line. The details of the numerical
scheme used to solve the Euler equations are described in Ref. [5], and previous results
from this method can be found in Ref. [6]. In the present implementation, the Lax-
Wendroff scheme described in Ref. [5] is replaced by the predictor-corrector scheme of
MacCormack [7], formally a second order scheme. The code is written for the
MATLAB® environment, which by default uses double precision, i.e., 64 bits on a 32 bits
CPU. All the results presented were obtained on a laptop computer with a 3.2 GHz
Pentium 4 CPU and 896 MB of RAM. Running times vary with grid size. For the grids
used here, typical running times ranged from a few seconds to a few minutes.

Table 2 shows results obtained with a series of grids. Columns 5 and 6 display the
inviscid drag coefficient computed with the trapezoidal rule (TR) and with Simpson’s
rule (SR). The drag coefficient order-of-convergence p computed using equations (4)
and (6) is shown in the last two columns. The order-of convergence for k = 3 for TR and
SR is showing a large discrepancy and both results are significantly greater than the
formal order of the scheme. For k = 4, the drag coefficient is not monotone and the order-
of-convergence evaluation fails. (Recall that the order-of-convergence for grid k depends
on the solutions from grids k, k+1, and k+2).

In order to establish that there is reason to suspect these results, we consider the
behavior of the error norm in total temperature. For this problem in the steady state, the
total enthalpy, and hence the total temperature, is constant. The L2 and L. norms of the

total temperature error are shown in Fig. 2 for grids k = 3, 4, 5 and 6. The first norm is an
indication of convergence in the mean while the second indicates absolute convergence.
The order-of-convergence based on the L2 and L. norms is 2.03 and 1.84, respectively.

These are in fairly good agreement with the formal order of the scheme. Why then is the
order-of-convergence of the drag functional misbehaving?

4. Order-of-convergence of functionals

To answer the last question, we first consider the following question: If the surface
pressure converges with order p(0 ) , what should the expected order-of-convergence of
the drag-functional be? To this end, let the computed surface pressure, cP , normalized by

the free stream pressure, P. , be given by

(9)
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P P

P P 
+ a(B)h

p(B),	 (10)
W	 W

where P is the exact surface pressure. Note that by design the computed pressure is in
e

the asymptotic range and has an order-of-convergence p(B) . The sectional drag
coefficient is defined by

Bmax P
Cd =	

1
	 J c — 1 b (B) cos(B)dB ,

z
yM^ A

f 0 

P

where y is the ratio of specific heats, MW is the free stream Mach number, b(B ) = 1 , and

A 
-f 

is a reference surface area, here taken as the projected plan-form area. Substituting

(10) into (11) we find

-	 .
Cd = 	

1
2

	 BJ 
P 

— 1 cos(B)dB + BJ a(0) P(B)
 cos(B)dO

5

2
yM

W
 A 
f 

0 2 W 3 0 	7 9

If a(B)hP
(B)

 is continuous on 10, B ax ] , then the second mean value theorem for

integrals[8] tells us that there is a number ^ E 48 0 , 0 ax59 such that

B
max
	

Bmax

J a(B)h
p (B)

 cos(B)dB = a (^ )h
p (
') J cos(B)dB .

0	 0

Therefore,

Cd = C
d ,e 

+Bh
p() 	 (12)

where

a( )sin(B
max

)
B =	

2	
= constant , 	 (13)

12
yM

W
A  ref

and C
d ,e 

is the exact value of the drag coefficient; therefore, the drag-functional

converges with an order p(^ ) representing a cosine-weighted average value of the

surface pressure order-of-convergence on the interval 10, 0max ] . Note that if the surface

pressure order-of-convergence is a constant, then the drag-functional converges at the
same rate as the pressure. This result holds for all integral functionals in which the
integrand depends linearly on the solution.

(11)
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5. The problem with quadrature

If we assume that the pressure order-of-convergence behaves like the total
temperature order-of-convergence, then the result just obtained is not consistent with the
results of Table 2. Thus, we return to the question we asked at the end of § 3. To answer
this question, we must look in some detail at the numerical integration of (11). The
integral (11) is approximated by a quadrature taken over M equally spaced intervals on
the surface of the cylinder,

	

B 
max
	

M+ 1

f fdB C D af,

	

0	 1

The quadrature is an approximation to the exact integral with a leading error of order h
q

,

	

M+ 1 	 B max

D a
i
 f = f fdB + O(h

q
) + H .O .T.

	

1	 0

If the quadrature is based on the extended TR, then

B

D af = 2(f + 2  f.. . + 2f
M

+ f
M+ 1

) = f fdB + 02 h
2
fE+ H .O .T . ,

	

TR	 0

and if the quadrature is based on the extended SR, then

B	 Bmax
	Daf=3(f+4f2+2f...+2fM-1+4fM+fM+1)= f fdB+180h4 fiv+H.O.T.,

SR 	 0

see Ref. [8] for more details on these and other quadrature rules. Therefore, for the
extended TR we have from (12) that

C
d
 = C

d
 
e 

+ Fh
2
 + Bh

p
 + O (h

2+p
) , 	 (14),

where p = p(^ ) and F = B
max 

fEE /12 . Introducing (14) in Eq. (4) we find

4	 -
C

d ,e 
+ Fh

2
 + Bh

p
 — 6 C

d
 
e 

+ F 0
2

 \2 

+ B0
2

1p

J 
Jz = _	

3
2

+B(
h
^_[

C
d , e

+ F
(

h
	 _ 	 (15)

C
de

+ F(
2
12

2

4
+B(4 ^

5
,

3	 3	 9

where h is the coarse grid spacing. The drag-functional order-of-convergence is given by
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G 2
p- 2 

8 [1 - 22 ] + h
p-2

 B 8 1 - 2p ] IHI
log2 (z) = p + log 2 l 

2
2( p-2)

8 [ 1 - 2
2

 ] 
+ h

p -2
B 8

1 - 2
p

 J I M

Equation (16) shows that there is interplay between the order-of-convergence of the drag-
functional and the order-of-error of the TR. The left hand side of Eq. (16) provides a
good estimate of the order-of-convergence of the drag-functional only if the log term is
small, i.e. the log term is the error. This term vanishes only if p = 2 or 8 = 0. For p N 2 if
the ratio 8 / B < 0, the estimated order-of-convergence of the drag-functional can be
singular. In the limit h -+ 0 we have

G 2, ifp P 2,
limlog (z) 

_ ip,_h-+0 2 	 if p<2.

The behavior of (16) is depicted in Fig. 3 for four different values of 8 /B as a function
of p for h = .01. For 8 / B positive, the estimated drag-functional order-of-convergence is
greater than its true value as long as p < 2. For p > 2, the estimated drag-functional
order-of-convergence levels off at a value of two. Thus, the TR cannot be used to predict
order-of-convergence greater than two. Any result that shows order-of-convergence
greater than two based on the TR (or greater than four based on the SR) is in error. The
latter occurs when 8 / B is negative resulting in singular behavior of the log term, as
shown on the right hand panel of Fig. 3, and very low or very high values of the predicted
order-of-convergence. This is the cause for the puzzling results of Table 2 for both the
TR and SR. This problem has gone unnoticed in the literature. For example, in Ref. [9] a
resistance coefficient, drag-like functional, is computed using the TR leading to order-of-
convergence of 4.4 and 9.5 for a formally second order accurate scheme. The authors fail
to provide any explanation for this behavior.

(16)

The extension of (16) to other quadrature rules is

G	 G2
p-q 

8
q
[1 - 2  q ] + h

p-q 
B [ 1 - 2p ] IH
	

=log2 (z ) = p + log 2 l 
2

2( p-q) 
8

q
[1 - 2  q ] + h

p-q 
B [ 1 - 2

p

1 1 , 

q

l

and

lim
h-+0 

lo z {G 
q, if p

_P 
q,

g2 ( ) p, if p< q.

6. How to eliminate the quadrature problem

2 trapezoidal rule,

4 Simpson's rule,	 (17)
6 Bode's rule,

The quadrature problem and its solution can be found by studying Eq. (15). Consider
the numerator of (15). The numerator is the drag coefficient of the medium grid minus



the drag coefficient of the coarse grid. The medium grid has a quadrature error of order

(h / 2)
2

, while the coarse grid has a quadrature error of order h
2
 . These errors do not

cancel out and their interplay with the algorithmic error causes the problems illustrated
on Fig. 3. The solution is to implement the quadrature in such a way that the quadrature
errors of the medium and coarse grids cancel. To do this, we evaluate the medium grid
quadrature using an h interval, i.e., we use only every other point of the medium grid.
The same idea is applied to the denominator. For the denominator, the quadrature for the
fine and medium grids can be evaluated either using h or h / 2. It is only important that
both be evaluated using the same spacing. When this is done, the log term in (16)
vanishes and we are left with:

log2 (z) = p .

Now there is no formal dependence on h or on F / B. With this modification, the TR can
be used to determine the functional order-of-convergence of schemes with p > 2.

Applying this modification to the drag calculation of the blunt-body problem, we
obtain the results shown in Table 3. Note that now the TR and SR give consistent values
for p. What is interesting about this method is that by implementing a less accurate
quadrature we obtain a more consistent evaluation of the order-of-convergence. We have
eliminated the quadrature error from the order-of-convergence evaluation. However, the
new results indicate very fast convergence. Are these results correct? We answer this
question in § 8 when we look in detail at what happens when the solution is near but not
in the asymptotic range.

7. Richardson extrapolation

Since we have introduced a quadrature of the drag based on the coarse grid points, a
question remains: How should we do a Richardson extrapolation of the drag? That is,
should the Richardson extrapolation of the drag be based on a quadrature using all
available grid points or only the coarse grid points? The Richardson extrapolation is
given by

p

C
	 _ Cd , k+1,j+1

2
 — 

C
d , k ,j
	 (18)

d , 'U	
2

p
 — 1	

,

where

	

q
C

d , k ,j 
C

d ,e 
+ Fh. +r hk . 	 (1 9)

The second term on the right hand side is the quadrature error, and the last term is the
algorithmic error. Introducing (18) into (19) we get
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+
F( 2

p
h
j+ 1 

- h
j

C	 = C
)+B ( 2ph

k+ 1 - h
k ) .

Cd , RE	 d , e	 2
p
 - 1 	

(20)

Sinceh
k+ 1

= ( h
k
 /2)

p
, Eq. (20) reduces to

F	 + -( 	 1	 )

p q 	q
2 h 	hj 	j

C
d , RE 

= C
d ,e 

+	
2

p 
- 1

. 	 (21)

If we use the new quadrature method, then h j = h j and Eq. (20) reduces to

Cd = C
d ,e 

+ flhq . 	 (22), RE

If we use the usual quadrature method, then h 
j+ 1 ;

= h . / 2 = hk / 2 and Eq. (21) reduces to

2
p-q 

- 1
C

d , RE 
= C

d ,e 
+ 

2
p
 
- 1
 ,l3hk .

As long as q > 0 the factor l( 2
p-

q - 1)/(2
p
 - 1 ) < 1, therefore, since hj P hk , Eq. (23) has a

smaller error than Eq. (22). Hence, for Richardson extrapolation of the drag we should
use the most accurate drag values available, i.e. those from Table 2.

8. Identifying the source of the anomalous behavior.

This section will examine an additional cause of the anomalies that have been
observed in the previous sections. We do this by assuming several reasonable models of
the error, applying the method given in § 2, and observing the result.

It is important to keep in mind that the actual error in any numerical solution on any
given grid contains a full hierarchy of errors that are unknown, but are generally assumed
to be of the form

=
nuc k = Ue + Dan hk ,	 (24)

n= p

where p is the unknown order of the numerical method. A primary goal of the verification
process is to either 1) verify that a method has a particular design order, or 2) to
determine the order of a method when it is applied outside of its ideal design space (non-
smooth grids, discontinuous solutions, etc). The standard method for deducing order
properties from grid convergence, described earlier, is obtained by fitting a single error
mode of the form ue,k = Ue + ahkp to the actual error. For sufficiently small h, the actual
error is dominated by the lowest order term, and the single mode model provides a good

(23)
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fit and an accurate prediction of the order-of-convergence. However, for larger h above
this asymptotic region, multiple error modes are competing in the actual error, and their
projection onto a single mode can be erroneous. This can be clearly illustrated by
assuming several slightly more realistic models for the error and observing the result of
applying equations (4) and (6).

The first model of the error, beyond the standard of Eq. (2), is simply one that
contains two modes

pl 	p2u
c,k 

= Ue + a
1
h
k 

+ a2 h
k

Substituting into Eq. (4), we obtain an equation equivalent to Eq. (16) and conclude that
the result depends only on p1 , p2 and the ratio a2 /a1 = a. Plotting the predicted order of
convergence as a function of p1 with p2 fixed for a < 0 or > 0 produces the curves
similar to those shown previously in Figures 3 (a) and (b), respectively. Here, it is clear
that the singular behavior occurs because the error measure briefly goes through zero as
the competing error terms cancel each other.

However, we are more interested in the behavior of the standard method as the grid is
refined. Figures 4 (a) and (b) illustrate the error and the order predicted by equations (4)
and (6) for the case where p1 = 1 , p2 = 2, and a = ± 1. (Note that larger or smaller values

of a do not alter the general behavior of the curves.) The error is smooth when a is
greater than zero, and the predicted order-of-convergence transitions smoothly from
p = 2 to p = 1 as h decreases. However, when a is less than zero, the denominator of
Eq. (4) passes through zero and the predicted order properties range from ±oo , taking
every value but those between one and two. Furthermore, there is a region where the
numerator and denominator of Eq. (4) are of opposite sign. We note that
log(z)= log(| z |) + iR when z < 0. The plots show log(| z |) instead of p, and the regions of
z < 0 are denoted with a dash-dot line segment.

Since functionals are not proper error norms, they are likely to be the result of many
competing and canceling terms. From the above illustration, it is clear that such
functionals will not converge in a monotone manner, and this will lead to the zeros in the
numerator of z and regions where z is negative, as observed above. To further support
this notion, we examine a spatial error model that will allow the order to be predicted
from either a functional of the solution or from a proper error norm of the solution. The
spatial error model is motivated by a Fourier stability analysis, which in essence,
provides an exact eigensolution to a discrete problem on a simple domain. Assume for
the moment a simple advection problem in which the exact solution is given by
U (x, t) = G (x — t) , and a numerical solution with both amplitude and phase error terms

e

that is modeled by

uc,k = (1 + a1 h
p 1 ) Ue (x, t (1 + a2 h p 2 )).	 (26)

(25)
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To enable a computation, let G(x) = cos(;x); and to avoid fortuitous cancellation that can
occur on periodic domains, let the physical domain be the fractional period 0 <x <7 /4. In
this exercise, we will define the functional, denoted by Ik , to be the integral of the
solution approximated by the trapezoidal rule. We will also define and examine several
error metrics. The first is the true error defined as a norm of uc , k — Ue (x, t), and denoted
by £k ,e. The second error measure, denoted £k, k+ 1 , is a norm of uc ,k — uc , k+ 1 , which is
simply the difference between solutions on sequential grids. The last error measure,
denoted £k, k _ ref, is a norm of uc ,k — uc , k _ ref , which is the difference between the current

solution and that on a very fine reference grid. Computations performed using L 1 , L 2

and L oo norms gave similar results. Therefore, the following figures and tables give only

the results using the L 2 norm, and with error model parameters p1 = p2 — 1 = 2 and

a1 = 2a2 = 1. Table 4 shows errors and convergences rates for the integral functional and
the 3 different error norms. The convergence rate of the functional, Ik , is erratic. The
entry in “()” indicates that z is negative for that case and the value given is log(| z |) .

However, the convergence of the L 2 norm of the actual error is between 2 and 3 on the

coarse grid and approaches 2, as the grid is refined. The L 2 norm of the local relative

error, £k, k+ 1 , is similar to the real error. The L 2 norm of the error with respect to a fine

grid reference solution, £k , k _ ref, initially trends like the exact error, but asymptotes to ~2.3

on the finest grid, as expected. It is interesting to note that since the norm of the
quantities £k, e, £k, k+ 1 , and £k , k _ ref are evaluated on grid k, the issues associated with

quadrature identified earlier are naturally eliminated.

Figures 5 (a), (b) and (c) give the solution, the absolute value of the relative error
u

c , k — 
u

c , k+ 1 I , 
and local values of z computed from the relative error, respectively. The

solutions on the three finest grids are indistinguishable from each other. The relative
error appears well behaved. The local minimums in the absolute value of the relative
error are where the relative error crosses through zero and changes sign. The shift in the
location of the zero will have little effect on any norm of this function. However, any
integrated functional will be strongly influenced by the cancellation that occurs between
the positive and negative contributions that exist on either side of each zero point. The
shifts are quite large even though, in this case, the phase error is the higher order term in
the error model. The local value of z is simply the ratio of two adjacent relative error
curves (with the sign restored). The zeros of the relative error cause z to approach ±oo

and the shifts in the zero points cause regions of negative z, just as was previously seen
in the two-mode model.

9. Accurate alternative procedures for deducing order property of functionals

The previous discussion suggests two approaches to reliably and accurately predict
the order-of-convergence of a functional. The first approach recognizes that the
fundamental problem is that functionals may have cancellation of various order error
terms embedded within them, and constructs a positive norm of a related quantity that
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minimizes this cancellation. The second approach accepts the presence of the embedded
cancellation, and fits the functional to a higher-order multi-mode error model of the
functional.

9.1 Norm based on relative error

Assuming the functional is an integrated quantity, the first approach is to base the
prediction of the order-of-convergence on a norm of the relative error of the integrand of
the functional. That is, if the functional F is defined as

F = f fdn ,	 (27)
n

then the order-of-convergence is computed from a norm of fk — fk+ 1 . Applying this
technique to the simulation results described in § 3 produces the L 2 error norms and

order-of-convergence rates given in Table 5. Here, the convergence rates are between 2
and 3 as we would expect; however, the rate is not smoothly (and monotonically)
transitioning from 3 to 2 as was observed in the model case. The cause of this behavior is
discussed below. Figure 6a shows the spatial distribution of the relative error metric. As
in the earlier case with the spatial model for the error, it is clear that shifts in the zero
point will cause large cancellations within the integrated functional, but will have little
effect on the norm of this metric. Another feature revealed in Fig. 6b is that the solution
in the down stream region is converging at a higher rate than is the upstream region. This
indicates that the error in this region is dominated by higher-order truncation error terms.
The norm of the relative error results in an average over the domain, and this produces
the non-monotone transition in the convergence rate.

This last result reveals an important distinction between the spatial error model of § 8
and typical simulation results. The model has a single wavelength that is uniformly
resolved; thus, the convergence transitions smoothly from p + 1 to p. However, in real
simulation results, the flow is not uniform and the grid distribution is not ideal; thus some
regions may be well resolved and others are not and higher-order error terms may locally
dominate the convergence. In this case, the norm of the relative error will produce a
representative average convergence rate, but may not converge monotonically.

9.2 Increasing the order of the error model

The second method accepts that the functional has embedded cancellations due to
higher order effects, and resolves the issue by increasing the order of the error model.
Using a sequence of four grids, and assuming p1 = p2 — 1 = p, it is possible to directly fit
the two-mode model to the local solution or to a numerical functional.

uc ,k = Ue + a1 hkp + a2hk
p +1	 (28)

After some manipulation, we find
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(2z - 1)(z - 1)(24u 	 z
2

k-1,k
 - 34u  k-2,k-1 z - 4u 

k-2,k-3 ) 
= 0 , 	 (29)

where 4u = u - u
c ,ji , j	 c , i

The root of interest is given by:

2
34u 	 -V94uk	+ 84u 4u

k-2,k-1	 k-2,k-1	 k-1,k 	 k-2,k-3
z =

	
(30)

44u
k -1,k

Figure 7 shows the order-of-convergence of the surface pressure from the blunt-body
solutions on grids k = 4, 5, 6 using the standard error representation, i.e., Eq. (2). The

singular behavior occurs at the body sonic point ( B ;z 46
o
). This is to be contrasted with

Fig. 8 where the order-of-convergence is evaluated using the higher order analysis
described here with the surface pressure from the blunt-body solutions on grids
k = 3, 4, 5, 6 . The new result is near 2 over most of the domain and the singular behavior is
eliminated. Similarly, if we compute the drag order-of-convergence based on the higher
order analysis, we obtain the results shown in Table 6 which are consistent with the
formal analysis of § 4.

We can also solve for the other unknowns, Ue , a1 and a2 :

8 (4u
k+1, k - z 4u

k+3,k+4 
)z

3(2z - 1)

4uk+ l,k
+( 2z- 1 )a

2a
1 

=	

2( z - 1) 	
(32)

and Û 
e 

= u
c , k - a1 hk

p - a2hk
p +1 . The “hat” denotes that this is not the exact solution but a

prediction of it. This prediction of the exact solution serves as a high-order version of the
standard Richardson extrapolation. Of particular interest is the ratio of the p + 1 and p
terms:

a h p+ 1

2 k = a2h /a1 .
a1 hkp

This ratio gives an indication of whether or not a region is dominated by the lower order
terms, and thus, is in the asymptotic range. Figure 9 gives this ratio for grids k = 3, 4, 5, 6 .

Here we see that the downstream region is dominated by the higher order terms on all but
the finest grid. This agrees with the results in the previous section in which the local

a2 = (31)
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convergence of the relative error measure also converged at a higher rate in the
downstream region.

Applying the higher-order fit given by equations (30) and (6) directly to the drag
functionals given in Table 2 produces the order-of-convergence shown in Table 7. The
higher order model predicts that the drag functional convergence rate approaches 1.7 as
the mesh is refined.

10. Conclusions and recommendations

With the increased reliance in both science and engineering on the numerical solution
of partial differential equations, the subject of code verification has become increasingly
significant and prominent. An important element of code verification is the study of grid
convergence and the determination of order-of-convergence. Most studies today of this
subject have been at best superficial and in many cases painfully inadequate. A brief
survey of the many papers presented in the AIAA drag prediction workshop series [ 10]
should suffice in establishing this observation. This paper is an attempt to reverse this
trend by first highlighting a series of problems that exist in the standard order-of-
convergence analysis, particularly as it relates to the evaluation of functionals, and
second by providing a number of solutions and workarounds to these problems. These
problems are certainly important, however, we believe that the most important message
from this work is that order-of-convergence studies are not trivial exercises and their
proper execution requires a high degree of control over grid properties and the capability
of systematically performing many levels of grid refinement. Highly complex problems,
such as those used in the drag prediction workshop series, are just not good candidates for
these studies.

It is important to distinguish between a code verification effort and an effort to
determine if a particular solution to a specific problem is sufficiently accurate for some
intended use. The two tasks are very different. A rigorous grid convergence and order-
of-convergence study can aid in determining if an algorithm has been implemented
correctly. However, such a rigorous study requires grids of the same family and grid
refinements that are uniform, preferably with grids sequences that are nested, as defined
in § 2. For steady-state problems, iterative or time convergence should be obtained with
residuals reduced several orders of magnitude below the solution spatial error. In the
second task of evaluating solution accuracy, limited time and resources often lead to
compromising one or more attributes of a rigorous study. While non-uniform mesh
refinement may lead to some improvement in the solution, especially when performed by
an expert, order-of-convergence properties computed from non-uniform refinements or
ill-converged solutions sets are meaningless. The common practice of performing such
order-of-convergence predictions should be avoided.

Whenever possible, error norms should be used to establish the order-of-convergence.
If functionals are used, first an analysis should be performed to establish the formal
dependence of the functional on the order-of-convergence of its functions, and if the
functional is an integral, then care must be exercised to avoid the interplay of quadrature
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accuracy errors and order-of-convergence errors. Integral functionals, such as lift or drag,
are subject to cancellation effects that can greatly delay the onset of the asymptotic
convergence regime. These cancellation effects are strongly influenced by the higher-
order contributions to the error. The order-of-convergence computed from a norm of the
relative error of the solution or the functional integrand is effective in estimating an
average order-of-convergence, is naturally immune to quadrature errors, and can provide
some insight into local convergence behavior of a solution. The higher order analysis
developed in § 9.2 is the best way to evaluate if the grids used are within the asymptotic
range and to establish if more levels of grid refinement are needed to reach the
asymptotic range. It should be part of any rigorous grid convergence study.
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1
k 'K	 ,

2 3 4

k+2	 1.58
k+3	 1.22

2.32
2.07

3.17
3.04

4.09
4.00

Table 1. Predicted order-of-convergence, p̂ , when a fine grid solution is used as a
surrogate for the exact solution.

X

Figure 1. Details of the computed pressure field for a Mach 6 inviscid flow past a
circular cylinder, O

max 
= 70

o
 .

k N M	 h	 C
d
 TR	 C

d
 SR p TR p SR

1	 6	 10	 0.1290994 1.8755919 1.8767669 1.92	 1.90
2	 12 20 0.0645497 1.8706109 1.8709412 2.73	 2.58
3 24 40 0.0322748 1.8692925 1.8693766 4.03	 3.25
4 48 80 0.0161374 1.8690942 1.8691147 — 	 —
5 96	 160 0.0080687 1.8690821 1.8690872
6	 192 320 0.0040343 1.8690859 1.8690872

Table 2. Mach=6 cases investigated. Cd is the drag coefficient and p is its order-of-
convergence. For the three finest grids the trapezoidal rule (TR) computed drag is not
monotone and for both rules the computed drag exhibits super- convergence.
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Figure 2. L2 and L. of total temperature error for entire shock layer, based on results

from grids k = 3, 4, 5, 6. In each case the line connects the data points for k = 3 and
k = 6. The slope of L2 is 2.03, that of L. is 1.84.

Figure 3. The figure shows the estimated order-of-convergence of the drag-functional as
a function of the true order-of-convergence of the drag-functional. The deviation from the
diagonal line indicates the error introduced by the TR quadrature. All the results shown
are for h = .01 .
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k Cd TR	 C
d
 SR	 p TR p SR

1 1.8755919 1.8767669
2 1.8696197 1.8709503
3 1.8680572 1.8693560 1.93	 1.87
2 1.8706109 1.8709412
3 1.8690402 1.8693679
4 1.8687875 1.8691135 2.63	 2.63
3 1.8692925 1.8693766
4 1.8690328 1.8691145
5 1.8690056 1.8690872 3.26	 3.26
4 1.8690942 1.8691147
5 1.8690669 1.8690873
6 1.8690668 1.8690872 8.15	 7.75

Table 3. Drag coefficient and its order-of-convergence evaluated using the coarse-grid
spacing of each grid subset in the quadrature rules.
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Figure 4. Error and log(| z |) for two mode model. The dash-dot line segment denotes
the region where z < 0 for the a = - 1 case.
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Metric Convergence of metric
h/h0 Ik £k,e £k,k+1 £k,k_ ref Ik £k,e £k,k+1 £k,k_ ref

1.0 -0.18641 1.56764 1.47571 1.56784 (4.73) 2.63 2.81 2.63
0.5 0.25319 0.24594 0.20292 0.24546 0.99 2.41 2.50 2.42
0.25 0.23664 0.04770 0.03701 0.04708 1.81 2.12 2.16 2.19
0.125 0.22830 0.01098 0.00833 0.01033 1.92 2.04 2.05 2.36
0.0625 0.22592 0.00267 0.00201 0.00201 — — — —
0.03125 0.22529 — — 0.0 — — — —

Table 4. Error metrics and convergence rates for spatial error model. The convergence
rate of the functional, Ik , is erratic; however, the convergence of the L 2 norm of the

actual error is between 2 and 3 on coarse grid and approaches 2 as the grid is refined.
The L 2 norm of the local relative error, £k, k+ 1 , is similar to the real error. The L 2 norm of

the error with respect to a fine grid reference solution, £k, k _ ref, initially trends like the

exact error, but asymptotes to 2.3 on the finest grid, as expected. The entry in “()”
indicates that z is negative for that case, and the value given is log(| z |) .
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Figure 5. Spatial distributions produced by the spatial error model on a sequence of
grids for (a) the solution uc , k , (b) the absolute value of the relative error uc , k — uc , k+ 1 and

(c) the local values of z computed from the relative error. The solutions on the three
finest grids are indistinguishable from each other. The local minimums in the relative
error are where it crosses through zero and changes sign. Integrated quantities will be
strongly influenced by the cancellation that occurs between the positive and negative
contributions that exist on either side of each zero point. The local value of z is simply
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the ratio of two adjacent relative error curves (with the sign restored). The zeros of the
relative error cause z to approach ±oo and the shifts in the zero points cause regions of
negative z .

h/h0

Error metric
£(P)k,k+1 	 S(P) k , k _ ref

Convergence of
error metric

1.0 30.49477	 38.661806 2.13	 2.20
0.5 6.957833	 8.4258712 2.43	 2.47
0.25 1.290086	 1.5198184 2.62	 2.65
0.125 0.209531	 0.2418774 2.54	 2.75
0.0625 0.035942	 0.0359420 —	 —

Table 5. Norms of error metrics of pressure and their convergence rates for the numerical
simulation results from § 3.

6; degrees	 #Abgrees
Figure 6. Spatial distribution of (a) the relative error, and (b) the local value of z, from
the numerical simulation results of § 3. The rightward shift in the position of the zero
point as the grid is refined would result in large cancellation effects in the integration of
the (signed) functional, but would have little effect on any norm of the quantity.
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Figure 7. Surface pressure order-of-convergence based on standard analysis using
blunt-body results on grids k = 4, 5, 6 . Singular behavior near B ;z 46

o
 corresponds to

body sonic point.

(Z) degr_e_es&

Figure 8. Surface pressure order-of-convergence based on higher order analysis using
blunt-body results on grids k = 3, 4, 5, 6. Dashed line indicates drag order-of-
convergence from Table 6.
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k	 C
d
 TR	 C

d
 SR	 p TR p SR

3 1.8692925 1.8693766 1.674	 1.681

4 1.8690328 1.8691145
5 1.8690056 1.8690872
6 1.8690056 1.8690871

Table 6. Drag order-of-convergence using higher order method and coarse grid
interval, k = 3, for quadrature rules.

IH^degrees

Figure 9. Ratio a2 h /a1 to for grids k = 3, 4, 5, 6. In asymptotic range this ratio should
be less than one.

k	 C
d
 TR	 C

d
 SR	 p TR p SR

1 1.87559192503 1.87676688882 0.56 	 0.57
2 1.87061085848 1.87094124452 1.30 	 1.26
3 1.86929251463 1.86937661231 1.70 	 1.67
4 1.86909418267 1.86911465349
5 1.86908208985 1.86908715853
6 1.86908589935 1.86908716957

Table 7. Order-of-convergence predicted by the 4-grid high order fit applied to the drag
functional data given in Table 2.
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